Definicije, klasifikacije, iskazi, Logika

Odnosi iskaza u logičkom kvadratu po savremenom tumačenju

1 Comment 28 September 2014

Za razliku od tradicionalnog tumačenja odnosa iskaza u logičkom kvadratu, u savremenom tumačenju univerzalni iskazi „Svi S su P“ i „Nijedan S nije P“ tumače se kao hipotetički iskazi, dok su partikularni iskazi zadržali egzistencijalno značenje.

To znači da se „Svi S su P“ sada  tumači kao „Ako S postoje, onda za sve S važi da su P“, dok se „Neki S su P“ tumači kao „Postoje neki S i oni su P“.

Pošto univerzalni iskazi, po savremenom tumačenju, ne tvrde postojanje, a partikularni tvrde, stari odnosi među AEIO iskazima više ne važe.

Savremeno tumačenje odnosa između AEIO iskaza uveo je Džordž Bul u 19. veku, a podržao ga je Džon Ven, koji je našao način da se ovi iskazi prikažu pomoću dijagrama, koji su sada poznati kao Venovi dijagrami.

Evo ih na jednoj slici:

venovi_dijagrami_lkvadrat_600

Gornji Venovi dijagrami koriste znak P’ za ne-P i S’za ne-S. Pravougaonik oko krugova predstavlja univerzum govora, odnosno ukupan zbir logičkih mogućnosti.

Sada kada to znamo, ponovo možemo da razmotrimo sve tradiconalne odnose u logičkom kvadratu.

Odnos subordiniranosti između A i I iskaza i E i O iskaza je najočiglednije izostao. Ako „Svi S su P“, sada znači „ako postoje S, svi S su P“ iz tog iskaza sigurno ne sledi „postoje barem neki S i oni su P“.

Takođe, ne važi ni odnos suprotnosti iz tradicionalnog tumačenja koji je zabranjivao da A i E iskazi budu istovremeno istiniti. Ako pogledamo Venove dijagrame za A i E stav, oni tvrde da u dve različite oblasti nema ničega, u oblasti preseka S i P i u oblasti preseka S i P’, što je moguće i logično, ako S ne postoji. Pošto su sada univerzlani iskazi shvaćeni kao implikacije, koje su uvek istinite ako je prvi član implikacije neistinit (S ne postoji) sama implikacija je tada istinita bilo da je drugi član implikacije istinit ili neistinit.

Odnos podsuprotnosti takođe prestaje da važi, jer ako S ne postoji, može biti neistinito i „Neki S su P“ i „Neki S nisu P“. Ponovo se na Venovim dijagramima vidi da I i O iskazi tvrde da u dva dela S „ima nečega“, što može biti istovremeno neistinito, što nije bilo moguće u tradicionalnom tumačenju.

Ali, odnos kontradiktornosti između A i O i E i I ostaje. Na Venovim dijagramima se vidi da oni zaista tvrde nešto protivrečno, pošto za iste oblasti tvrde da u njima ima, odnosno, nema ničega. Najkraće se AEIO iskazi mogu zapisati ovako:
A        sp’=0

E         sp=0

I          sp≠0

O        sp’≠0

Iz ovog najjednostavnijeg zapisa, koji operiše samo sa pojmom preseka, ponovo se vidi da odnos protivrečnosti ostaje da važi.

Savremeno tumačenje odnosa u logičkom kvadratu predstavlja prilagođavanje činjenici da univerzalni iskazi u nauci izražavaju hipoteze, zbog hipotetičkog karaktera nauke oko koga su se filozofi i naučnici složili u 19. i 20 veku. Hipoteze se iražavaju “ako…onda…” formom i mogu se  opvrgnuti eksperimentom, a često su izraženi preko predmeta koji ne postoje, poput formulacije Prvog Njutnovog zakona: “Sva tela na koje ne deluju sile teže da ostanu u stanju mirovanja ili pravolinijskog jednoličnog kretanja.”

Tradicionalno tumačenje i savremeno tumačenje logičkog kvadrata i odnosa između AEIO iskaza nisu protivrečni jer govore o različitim AEIO iskazima, koji su različito protumačeni. Tradicionalno tumačenje je upotrebljivije u svakodnevnom životu i većem delu prirodnih i društvenih nauka, gde obično govorimo o subjektima za koje znamo da postoje, a savremeno tumačenje u naukama koje operišu sa apstrakcijama za koje ne znamo da li postoje.

SHARES
Share on FacebookShareTweet on TwitterTweet

Trackbacks/Pingbacks

  1. Svet logike - March 6, 2014

    […] 0 Comments 28 October 2013 […]

© 2017 Kratka istorija filozofije. Powered by WordPress.

Daily Edition Theme by WooThemes - Premium WordPress Themes

%d bloggers like this: